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Extraterrestrial Helium Trapped in Fullerenes in
the Sudbury Impact Structure

Luann Becker,* Robert J. Poreda, Jeffrey L. Bada

Fullerenes (C6o and C7o) in the Sudbury impact structure contain trapped helium with a
3He/4He ratio of 5.5 x 10-4 to 5.9 x 10-4. The 3He/4He ratio exceeds the accepted solar
wind value by 20 to 30 percent and is higher by an order of magnitude than the maximum
reported mantle value. Terrestrial nuclear reactions or cosmic-ray bombardment are not
sufficient to generate such a high ratio. The 3He/4He ratios in the Sudbury fullerenes are
similar to those found in meteorites and in some interplanetary dust particles. The im-
plication is that the helium within the Cso molecules at Sudbury is of extraterrestrial origin.

Fullerenes (Cc_._ and C70) have recently
been identified in a shock-produced breccia
(Onaping Formation) associated with the
1.85-billion-year-old Sudbury impact struc-
ture (1). The presence of 1 to 10 parts per
million (ppm) (1) of fullerenes in these
samples from the Onaping Formation raises
questions about the origin of fullerenes and
about the potential for delivery of intact
organic material to Earth by a large bolide
(for example, an asteroid or comet). Be-
cause the Sudbury target rocks are poor in
carbon (C), we have suggested that the
fullerene C was extraterrestrial in origin
(1). There are two possible scenarios for the
presence of fullerenes in the Sudbury im-
pact deposits: (i) that fullerenes are synthe-
sized within the impact plume from the C
contained in the bolide (1), or (ii) that
fullerenes were already present in the bolide
and survived the impact event. We exam-
ine here these possible sources of the Sud-
bury fullerenes by searching for noble gases
trapped inside the fullerene molecule.

The correlation of C and trapped noble
gas arums in meteorites is well established
(2). Primitive meteorites contain several
trapped noble gas comlxments that have
anomalous isotopic comfx_sitions. For exam-
ple, Black and Pepin (3) found anomalous
Ne values in several primitive unmetamor-
phosed meteorites, and Anders and co-work-
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ers (4) reported Kr and Xe values in the
Murchison and Allende meteorites that are
indicative of a presolar origin. Several C-
bearing phases have been recognized as car-
riers of trapped noble gases, including SiC,
graphite, and diamond (5). Fullerenes have
been suggested as a carrier of noble gas com-
ponents in carbonaceous chondrites (6);
however, so far, the identification of

fuUerenes (Cto and C¢0) is limited to a single
occurrence in the Allende meteorite (7).

The C,0 molecule is large enough to en-
close the noble gases He, Ne, At, Kr, and Xe
but is too small to contain diatomic ga_s
such as N 2 or triatomic gases such as CO 2.
Recent experimental work has demonstrated
that (i) He is incorporated into Cs0 during
fullerene formation in a He atmosphere and
(ii) noble gases of a specific isotopic comtx_-
sition can be introduced into synthetic
fullerenes at high temperatures and pres-
sures; these gases can then be released by the
breaking of one or more C-C bonds during
step-heating under vacuum (8). The unique
thermal release patterns for He encapsulated
within the C¢,o molecule (He@Co,0) are sim-
ilar to the patterns for acid-resistant residues
of carbonaceous chondrites (9), suggesting
that fullerenes could be a carrier of trapped
noble gases in meteorites.

To determine the noble gas abundances
and isotopic ratios fi_r the fullerenes, we
undertook a systematic study of acid-resis-
tant residues generated from samples col-
lected at the Dowling and Capreol town-
ships within the C-rich layer (Black Mem-
ber) of the Onaping Formation (10). If the
fullerenes were formed in the impact plume,
then the imtopic ratios of the trapped gases
would reflect the comlx3sition _f Earth's
atmosphere (that is, terrestrial) at the time
of the impact. If, on the other hand, the
fullerenes were present in the bolide befi_re
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Coo molecule is also of extraterrestrial ori-

gin. In order to retain extraterrestrial He,

fu[lerenes most have st,rvived the impact

that produced the Sudbur3, crater (23).

If the fullerenes had for,ned as a result of

the impact event, it seems likely that the
_He/4He ratio would reflect some contribu-

tion from Earth's atmosphere, resulting in a
_He/4He ratio lower than solar wind values.

The rigid-sphere incorlx)ration mt×|el devel-

oped for the synthetic fullerenes (8) su_ests

that the probability that a noble gas atom

will be trapped within a fullerene molecule

during formation is a function of the si:e of

the fullerene cavity and the density of the

gas. According to this mtx:lel (8), the _He

partial pressure for the Sudbt, ry fuIlerenes at
the time of formation is estimated to have

been 0.5 torr (versus 10 -z° tort in the

present-day atmosphere), suggesting that a

mechanism other than a terrestrial synthesis

is needed. The ratios of the C60 isotopic mass

peaks for the fullerenes (1) show a possible

enrichment in I_C, which wot, ld also indi-

cate an extraterrestrial source of C.

Other possible terrestrial production

mechanisms for the _He, such as cosmic-ray

bombardment on Earth, may account for

only a tiny fraction of the total 3He in the

C60 because surface exposure of the Sudhury
rocks for more than 5 x 109 years would be

necessary to generate the measured amount
(24). Nuclear reactions in the terrestrial

environment over geologic time are also

capable of generating high _He/4He ratios,

and this process has been invoked m ex-

plain the high _He/4He ratios determined in

some diamonds (25). The dominant pro-

Table 1. Concentration of the He released during step-heating (17). The _He/4He ratio (R) is compared
to the average value for terrestrial air (Ra,,).
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850 1.33 2.67 358

Total 68.0 115.6 423

duction mechanism is eLi + n ---+ _He +

4He (_H decays to _He). However, in typi-

cal crustal rocks, the _He/4He ratio of this

nucleogenic component is 10 -s, or 10 -4

times that observed for Sudbury fullerenes.

Experimental rest, Its (26} indicate that,
even under ideal conditions in which the Li

atom is attached to the C_ molecule and
then irradiated with a low thermal neutron

flux (10 _4 neutrons per square centimeter),

only four _H atoms were incorporated per

10 '° C.0 molecules. The irradiation also

destroyed a large portion of the fullerenes.

The experimental yield is only ! 1% of the
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Fig. 1. (A) Laser desorption (reflectmn) mass spectrum (LDMS) of the Dowling sample showing peaks at
nYz of 720 and 840 ainu. Intensity is given in arbitrary units. The Dowling sample had significantlymore
Cro_"(804 amu) than the Capreol sample (the C7o÷ peak for Capreol was barely above background). (B)
The LDMS of the Capreol sample. By carefully calibrating the mass spectrometer at an acceleration
voltage of 5 keV, we were able to observe a mass spectrum that included C6o_ and CeoHe* at 724 ainu
(a peak for 724 ainu was not observed in any of the authentic fullerene standards). This analysis
maximizes the detection for C6o* and C_He ÷, and thus the peak intensitiesshown are exaggerated and
do not reflectthe absolute abundances of the ions. Under the LDMS conditions, it is unlikelythat Cc,oHe"
would surviveif He were bound to the exterior of the C6o_"molecule. These results suggest that He is in
the interiorof the Sudbury C_' molecule, indicating an endohedral complex (16).
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concentration (37 _He atoms per 10 '° C_)

observed, demonstrating that nuclear reac-
tion implantation is not an effective mech-

anism for getting He into fullerenes.

The presence of extraterrestrial He@C60

in the Sudbury impact deposits suggests that

fullerenes may indeed be present in some
meteorites or comets and that fullerenes

may also be a unique carrier of noble gases
in certain extraterrestrial envinmments. In
addition, on the basis of the He release and

temperature-pressure stability estimates for
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Fig. 2. Temperature (T')-dependent aHe release
for the Capreol (•) and Dowling (e) samples.
Open symbols are the release rates for the syn-
thetic fullerenes (C_ and C_r_ taken from (8): g7
and/_.) _He, (O) _He. and {") Ne.



He@C(, 0 [see Fig. 2 and (8)], some portion
of the Sudbury bolide must have remained
well below the He@C_._ stability tempera-
ture (IO00°C). The survival of He@C60
during a bolide impact such as the one that
created the Sudbury crater is unexpected
(27) and suggests that the exogenous deliv-
ery of organic material to the early Earth
may be more favorable than has been pre-
viously assumed. The extensive fragmenta-
tion of a bolide during passage through
Earth's atmosphere may be one way of pre-
serving some of the extraterrestrial organic
material during an impact event.

An important remaining consideration
is the type of environment that would favor
fu[lerene formation. The diffuse interstellar
medium (1SM) is a hostile environment,
and several processes may act to destroy
fullerenes (for example, sputtering or
shocks). However, there is evidence for the
existence of a solid form of C that is of the

size of a large molecule or a small particle,
having survival characteristics against ultra-
violet photodissociation and destructive
shocks (28). Whether this material is in the
form of po[ycyclic aromatic hydrocarbons
(28, 29) or is related to fuUerene molecules
(30) remains an intriguing question.

Because the Sudbury fullerenes exhibit
3He/4He ratios that exceed those associat-
ed with the solar wind and because of the
high He pressure of incorporation (- 1000
torr at 1000°C), we favor a scenario in
which He is trapped in the Sudbury
fullerenes before the condensation of the
solar nebula (30). However, alternative
mechanisms occurring in the ISM, such as
spallation reactions and selective He im-
plantation, may also be responsible for the
higher than solar 3He/4He ratios. The pau-
city of H appears to be necessary to pro-
mote the C shell closure required for
fullerene formation (31). Environments in
which the formation and preservation of
fullerenes may be favorable (30, 31) in-
clude those for which the H concentra-
tions are much lower than the mean cos-
mic abundance (H/He < 10-9), the C/He
ratio is -0.004, and the C/O ratio is > 1.
These conditions are similar to the out-
flows from Wolf Rayet and R Coronae
Borealis stars (30-33). Confirmation of a
presolar origin for the Sudbury fullerenes
will require the identification of anoma-
lous isotopic compositions of Ne, Kr, and
Xe [for example, the pure 12Ne component
(5)] that may be contained within the
fullerene molecule (34) and precise deter-
mination of the Sudbury fullerene C iso-
topic ratio.
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